Size Matters: A Comparative Analysis of Community Detection Algorithms
نویسندگان
چکیده
Understanding community structure of social media is critical due to its broad applications such as friend recommendations, user modeling and content personalizations. Existing research uses structural metrics such as modularity and conductance and functional metrics such as ground truth to measure the qualify of the communities discovered by various community detection algorithms, while overlooking a natural and important dimension, community size. Recently, anthropologist Dunbar suggests that the size of stable community in social media should be limited to 150, referred to as Dunbar’s number. In this study, we propose a systematic way of algorithm comparison by orthogonally integrating community size as a new dimension into existing structural metrics for consistently and holistically evaluating the community quality in social media context. we design a heuristic clique based algorithm which controls the size and overlap of communities with adjustable parameters and evaluate it along with five state-of-the-art community detection algorithms on both Twitter network and DBLP network. Specifically, we divide the discovered communities based on their size into four classes called close friend, casual friend, acquaintance, and just a face, and then calculate the coverage, modularity, triangle participation ratio, conductance, transitivity, and the internal density of communities in each class. We discover that communities in different classes exhibit diverse structural qualities and many existing community detection algorithms tend to output extremely large communities.
منابع مشابه
Comparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملتشخیص اجتماعات ترکیبی در شبکههای اجتماعی
One of the great challenges in Social Network Analysis (SNA) is community detection. Community is a group of vertices which have high intra connections and sparse inter connections. Community detection or Clustering reveals community structure of social networks and hidden relationships among their constituents. By considering the increase of datasets related to social networks, we need scalabl...
متن کاملA Comparative Analysis of Community Detection Algorithms on Artificial Networks
Many community detection algorithms have been developed to uncover the mesoscopic properties of complex networks. However how good an algorithm is, in terms of accuracy and computing time, remains still open. Testing algorithms on real-world network has certain restrictions which made their insights potentially biased: the networks are usually small, and the underlying communities are not defin...
متن کاملA Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملOPTIMAL SIZE AND GEOMETRY DESIGN OF TRUSS STRUCTURES UTILIZING SEVEN META-HEURISTIC ALGORITHMS: A COMPARATIVE STUDY
Meta-heuristic algorithms are applied in optimization problems in a variety of fields, including engineering, economics, and computer science. In this paper, seven population-based meta-heuristic algorithms are employed for size and geometry optimization of truss structures. These algorithms consist of the Artificial Bee Colony algorithm, Cyclical Parthenogenesis Algorithm, Cuckoo Search algori...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1712.01690 شماره
صفحات -
تاریخ انتشار 2017